Plik:Escher like tiling Fat Douady rabbit Julia set.png
Z testwiki
Przejdź do nawigacji
Przejdź do wyszukiwania
Rozmiar podglądu – 600 × 600 pikseli. Inne rozdzielczości: 240 × 240 pikseli | 480 × 480 pikseli | 768 × 768 pikseli | 1024 × 1024 pikseli | 2000 × 2000 pikseli.
Rozmiar pierwotny (2000 × 2000 pikseli, rozmiar pliku: 646 KB, typ MIME: image/png)
Ten plik znajduje się w Wikimedia Commons i może być używany w innych projektach. Poniżej znajdują się informacje ze strony opisu tego pliku.
Opis
| OpisEscher like tiling Fat Douady rabbit Julia set.png |
English: Escher like tiling Fat Douady rabbit Julia set. c = -0.125+0.649519052838329*i. Compare Fig 4.12 page 185 from book : The Science of Fractal Images by MF Barnsley et al.[1] |
| Data | |
| Źródło | own work with help of Michael Sargent |
| Autor | Adam majewski |
| Inne wersje |
|
Licencja
Ja, właściciel praw autorskich do tego dzieła, udostępniam je na poniższej licencji
Ten plik udostępniony jest na licencji Creative Commons Uznanie autorstwa – Na tych samych warunkach 4.0 Międzynarodowe.
- Wolno:
- dzielić się – kopiować, rozpowszechniać, odtwarzać i wykonywać utwór
- modyfikować – tworzyć utwory zależne
- Na następujących warunkach:
- uznanie autorstwa – musisz określić autorstwo utworu, podać link do licencji, a także wskazać czy utwór został zmieniony. Możesz to zrobić w każdy rozsądny sposób, o ile nie będzie to sugerować, że licencjodawca popiera Ciebie lub Twoje użycie utworu.
- na tych samych warunkach – Jeśli zmienia się lub przekształca niniejszy utwór, lub tworzy inny na jego podstawie, można rozpowszechniać powstały w ten sposób nowy utwór tylko na podstawie tej samej lub podobnej licencji.
c source code
/*
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
==============================================
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOfX -> DrawPointOfX -> ComputeColorOfX
first 2 functions are identical for every X
check only last function = ComputeColorOfX
which computes color of one pixel !
==========================================
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out > b.txt
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >a.txt
----------------------
real 0m19,809s
user 2m26,763s
sys 0m0,161s
{c=0+0*i; circle }
C_re=-0.0; {wspolczynnik funkcji F(z)=(z*z)+c }
C_im=0.0; { c jest liczba zespolona : c=c_re+c_im*i }
{target set C_int }
C_re_int=-1.1; {wspolczynnik funkcji F(z)=(z*z)+c_int }
C_im_int=-0.001; { c jest liczba zespolona : c_int=c_re_int+c_im_int*i }
skala=250.10; {standard 15 ; sproboj: -2.0; 1.0 ; 1000.0; }
xMin=-1.0;
xMax=1.0;
dx=xMax-xMin;
yMin=-1.0;
yMax=1.0;
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int iHeight = 10000; //
// The size of array has to be a positive constant integer
static unsigned int iSize; // = iWidth*iHeight;
// memmory 1D array
unsigned char *data;
unsigned char *edge;
//unsigned char *edge2;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
static const double ZxMin = -1.0; //-0.05;
static const double ZxMax = 1.0; //0.75;
static const double ZyMin = -1.0; //-0.1;
static const double ZyMax = 1.0; //0.7;
static double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static double ratio;
// complex numbers of parametr plane
double complex c = 0.0; // parameter of function fc(z)=z^2 + c
//target set C_int }
double complex tc =-0.125+0.649519052838329*I; // {wspolczynnik funkcji F(z)=(z*z)+c_int }
double scale = 10.0; // {standard 15 ; sproboj: -2.0; 1.0 ; 1000.0; }
int Period = 2;
static int iterMax = 255; //iHeight*100;
static double ER = 2.0; // EscapeRadius for bailout test
//double EscapeRadius=1000000; // = ER big !!!!
// SAC/J
//double lnER; // ln(ER)
//int i_skip = 2; // exclude (i_skip+1) elements from average
//unsigned char s = 7; // stripe density
//double BoundaryWidth = 3.0; // % of image width
//double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;
/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;
/* ------------------------------------------ functions -------------------------------------------------------------*/
//------------------complex numbers -----------------------------------------------------
// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double GiveZy (int iy) {
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double GiveZ( int ix, int iy){
double Zx = GiveZx(ix);
double Zy = GiveZy(iy);
return Zx + Zy*I;
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
// bailout test
// z escapes when
// abs(z)> ER or cabs2(z)> ER2
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time
int Escapes(complex double z){
// here target set (trap) is the exterior circle with radsius = ER ( EscapeRadius)
// with ceter = origin z= 0
// on the Riemann sphere it is a circle with point at infinity as a center
if (cabs(z)>ER) return 1;
return 0;
}
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************
/*
Begin { petla wewnetrzna}
tn:=0;
tx:=x*skala;
ty:=y*skala;
repeat
inc(tn);
xTemp:=(tx+ty)*(tx-ty)+C_re_int;
ty:=2*tx*ty+C_im_int;
tx:=xTemp;
until (tn>=nMax) or (ty*ty+tx*tx>BailOut);
if tn=nMax then break;
end;
*/
int EscapeTimeEscher(complex double z){
int nMax = iterMax;
int n;
//double cabsz;
z = z*scale; //
for (n=0; n <= nMax && cabs(z)<ER; n++){ //forward iteration
//if (cabsz > ER) break; // escaping
//if (cabsz< PixelWidth) break; // fails into finite attractor = interior
z = z*z + tc; /* forward iteration : reversed basilica */
}
return n;
}
unsigned char ComputeColorOfLSM(complex double z){
int nMax = iterMax;
//double cabsz;
unsigned char iColor;
complex double tz;
int n = 0;
int tn = 0;
double size = 0.0;
double tsize = 0.0;
size = cabs(z);
while (n < nMax && (size < ER)){ //forward iteration
// inner loop
tn = 0;
tsize = 0.0;
tz = z*scale;
while (tn < nMax && (tsize < ER)){ //forward iteration
tz = tz*tz + tc; /* forward iteration complex quadratic polynomial */
tsize = cabs(tz);
tn++;
}
if (tn == nMax) break;
//
z = z*z; /* forward iteration complex quadratic polynomial */
size = cabs(z);
n++;
}
if (tn == nMax) // inside circle
{
if (n==0)
{iColor = 255;} // target set
else iColor = (n*30) % 255;
}
else iColor = iColorOfExterior; // outside the circle
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfLSM(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfLSM (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfLSM(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfBD(complex double z){
int nMax = 255;
double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > ER) break; // esacping
if (cabsz< PixelWidth) break; // fails into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
if (creal(z)>0.0)
iColor = 255;
else iColor = 0;
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfBD(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfBD (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfBD(A, ix, iy); //
}
return 0;
}
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************
int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
FILE * fp;
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name [100]; /* name of file */
snprintf(name, sizeof name, "%.1f", k); /* */
char *filename =strncat(name,".pgm", 4);
// save image to the pgm file
fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode
fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
fwrite(A,iSize,1,fp); // write array with image data bytes to the file in one step
fclose(fp);
// info
printf("File %s saved ", filename);
if (comment == NULL || strlen(comment) ==0)
printf("\n");
else printf (". Comment = %s \n", comment);
return 0;
}
int PrintInfoAboutProgam()
{
// display info messages
printf ("Numerical approximation of Escher like tilings of Julia sets by Michael Sargent for fc(z)= z^2 + c \n");
//printf ("iPeriodParent = %d \n", iPeriodParent);
//printf ("iPeriodOfChild = %d \n", iPeriodChild);
printf ("parameter c = ( %.16f ; %.16f ) \n", creal(tc), cimag(tc));
printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
printf ("PixelWidth = %f \n", PixelWidth);
// image corners in world coordinate
// center and radius
// center and zoom
// GradientRepetition
printf ("Maximal number of iterations = iterMax = %d \n", iterMax);
printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio);
//
printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is diplayed in the console
return 0;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int setup ()
{
printf ("setup start\n");
c = 0.0; //
/* 2D array ranges */
iWidth = iHeight;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight); // it should be 1.000 ...
//ER2 = ER * ER; // for numerical optimisation in iteration
//lnER = log(EscapeRadius); // ln(ER)
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
//edge2 = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL ){
fprintf (stderr, " Could not allocate memory");
return 1;
}
//BoundaryWidth = 20.0*iWidth/2000.0 ; // measured in pixels ( when iWidth = 2000)
//distanceMax = BoundaryWidth*PixelWidth;
printf (" end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int end(){
printf (" allways free memory (deallocate ) to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
free (data);
free(edge);
PrintInfoAboutProgam();
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int main () {
setup ();
//DrawImagerOfBD(data);
//SaveArray2PGMFile (data, iWidth+0.2, "BD/J");
//ComputeBoundaries(data, edge);
//SaveArray2PGMFile (edge, iWidth+0.3, "boundaries of BD/J");
DrawImagerOfLSM(data);
SaveArray2PGMFile (data, iWidth+scale +0.6, "LSM/J");
ComputeBoundaries(data, edge);
SaveArray2PGMFile (edge, iWidth+scale+0.7, "boundaries of LSM/J");
CopyBoundaries(edge, data);
SaveArray2PGMFile (data, iWidth+scale+0.8, "LSM/J with boundaries");
end();
return 0;
}
- ↑ The Science of Fractal Images by Michael F. Barnsley, Robert L. Devaney, Benoit B. Mandelbrot, Heinz-Otto Peitgen, Dietmar Saupe, Richard F. Voss
Podpisy
Dodaj jednolinijkowe objaśnienie tego, co ten plik pokazuje
Escher like tiling Fat Douady rabbit Julia set
Obiekty przedstawione na tym zdjęciu
przedstawia
Douady rabbit angielski
Jakaś wartość bez elementu Wikidanych
12 kwi 2020
661 960 bajt
2000 piksel
2000 piksel
image/png
af1e415362d00be7dff49b1893c52da2a4a066e1
Historia pliku
Kliknij na datę/czas, aby zobaczyć, jak plik wyglądał w tym czasie.
| Data i czas | Miniatura | Wymiary | Użytkownik | Opis | |
|---|---|---|---|---|---|
| aktualny | 19:24, 12 kwi 2020 | 2000 × 2000 (646 KB) | wikimediacommons>Soul windsurfer | Uploaded own work with UploadWizard |
Lokalne wykorzystanie pliku
Poniższa strona korzysta z tego pliku: