Algebra abstrakcyjna/Grupy - podstawy

Z testwiki
Wersja z dnia 21:13, 7 kwi 2008 autorstwa imported>Blindrood (Rząd grupy; grupa skończona)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacji Przejdź do wyszukiwania

Grupy - podstawy

Definicja grupy

Grupą nazywamy parę (G,*), gdzie G jest dowolnym zbiorem niepustym, a * jest działaniem w zbiorze G spełniającym warunki:

  • (G1) działanie * jest łączne;
  • (G2) działanie * ma element neutralny;
  • (G3) dla każdego elementu zbioru G istnieje element odwrotny.

Grupa abelowa

Grupę (G,*) nazywamy grupą abelową, jeśli działanie * jest przemienne.

Rząd grupy; grupa skończona

Niech G będzie grupą. Jeśli zbiór G jest skończony, to grupę G nazywamy skończoną, a liczbę elementów zbioru G nazywamy rzędem grupy G i oznaczamy przez |G|. Jeśli zbiór G jest nieskończony, to mówimy, ze grupa G jest nieskończona lub też, że grupa G ma rząd nieskończony. Piszemy wtedy |G|=∞.

Grupa przekształceń

Def.

Grupa symetryczna

Grupą symetryczną (grupą symetrii, grupą permutacji) zbioru X nazywamy zbiór wszystkich bijekcji z X na X z działaniem składania funkcji. Grupę tę oznaczamy zazwyczaj przez SX,S(X),Sym(X).


Szablon:Nawigacja